ANNUAL EXAMINATION-2024

CLASS-XI SUBJECT- MATHEMATICS

Time Allowed: 3hrs

MM: 80

General Instructions:

1) Question paper consists of five sections Sec-A, Sec-B, Sec-C, Sec-D and Sec-E.

2) All questions are compulsory where as internal choices have been provided

Section- A (one mark question)

1) No. of relation from a set A having 3 elements to another set B having 4 elements will be: b) 2³ a) 2⁴ c) 2¹² d) Empty set 2) $2x + 3y \le 5$ is a a) Strict inequality c) Slack inequality b) Normal inequality d)None of the above 3) Which term of sequence 2, $2\sqrt{2}$, 4, ... is 128 a) 13 b) 30 c) 31 d) None of these 4) Equation of Parabola whose vertex is (0,0) passing through (5,2) and symmetric with respect to y-axis: a) $25x^2 = 2y$ b) $2x^2 = 25y$ c) $2x^2 = -25y$ $25x^2 = -2y$ 5) Slope of a line which makes an angle of 30° with the positive direction of y-axis measured anti-clockwise: b) $-\sqrt{3}$ c) $\sqrt{2}$ d) $-\sqrt{2}$ a) $\sqrt{3}$ 6) The octant in which point (2, -4, -7) lies a) 3rd b) 7th c) 8th d) 5^{th}

7) The value of $\lim_{x \to \frac{\pi}{2}} \tan x$ will be							
a) 0	b) ∞	c) Does not exist	d) 1				
8) Probability that a leap year is not having 53 Sundays is:							
a) 2/7	b) 5/7	c) 1/7	d) None of these				
9) Variance of first x natural numbers will be:							
a) $\frac{(x^2+1)}{2}$	b) $\frac{(x^2+1)}{12}$	c) $\frac{(x^2-1)}{12}$	d) None of these				
10) Odds against an event is 5:11 then the probability that the event will happen:							
a) 5/11	b) 5/16	c) 6/17	d) None of these				
11) For the following data, the mean deviation about median will be: 3, 9, 5, 3, 12, 10, 18, 4, 7, 19, 21							
a) 5.27	b) 2.5	c) 5.1	d) None of these				
12) 3 vertices of parallelogram ABCD are A(3,-1,2), B(1,2,-4), C(-1,1,2), the							
coordinate of fourth vertex will be:							
a) (1,-2,8)	b) (-1,2,8)	c) (1,-2,-8)	d) (-1,-2,-8)				
13) Value of K for which the line $(K - 3)x - (4 - K^2)y + K^2 - 3K + 6 = 0$ is							
passing through origin							
a) 6 or 1	b) 1 or 6	c) -6, -1	d) -1, 6				
14) Equation of family of lines passing through origin							
a) $y = mx + c$	b) $y = kx$	c) $y = c$	d) $x = c$				
15) Range of function $F(x) = 2 - 3x$; $x \in R$; $x > 0$ will be							
a) (2,∞)	b) (−∞, 2)	c) (−∞, −2)	d) None of these				
16) Solution of inequality $\frac{x}{3} > \frac{x}{2} + 1$ will be							
a) (-∞,—6)	b) (-∞, 6)	c) (6,∞)	d) None of these				

Page **2** of **6**

17) Derivative of function $F(x) = 1 + x + x^2 + \dots + x^{50}$ at $x = 1$ will be								
a)	1200	b) 525		c) 5050	d) None of these			
18) Position of point (-2.5, 3.5) with respect to circle $x^2 + y^2 = 25$ will be								
a)	a) Inside the circle			c) Outside the circle				
b)	b) On the circle d) None of these							
19) A &B are two events $P(A) = 0.54$, $P(B) = 0.69$ and $P(A \cap B) = 0.35$ then the								
value of $P(A \cap B)'$ will be								
a)	0.19	b) 0.12		c) 0.34	d) 0.88			
20) Let A & G be AM and GM of two given positive real numbers a & b, then								
a)	A > G	b) $A \ge G$		c) <i>A</i> < <i>G</i>	d) $A \leq G$			

Section-B (2 marks each)

- 21) Find the Domain and range of following real function $f(x) = \sqrt{16 x^2}$. Show calculation also.
- 22) Find the equation of circle passing through (2,3) and (-1,1), whose centre is on the line x 3y 11 = 0.
- 23) Find the standard deviation of following data:

Xi	3	8	13	18	23
fi	7	10	15	10	6

- 24) Evaluate $\lim_{x \to \frac{\pi}{2}} \frac{\tan 2x}{x \frac{\pi}{2}}$ OR $\lim_{x \to 0} \frac{\cos 2x 1}{\cos x 1}$.
- 25) Find the derivative of function $2\sqrt{\sin x^3} + \cos^2 x$ with respect to x.

Section-C (3 marks question)

26) Find the ratio in which the line segment joining the points (4, 8, 10) and (6, 10, -

8) is divided by yz-plane.

OR

Using section formula, show that the points A(2, -3, 4), B(-1, 2, 1) and C(0, 1/3, 2) are collinear.

27) Find the derivative of $\sqrt{\sin x}$ by using first principle.

OR

Find the derivative of $\frac{x+1}{x-1}$ by using first principle.

- 28) Find the image of point (3, 8) with respect to the line x + 3y = 7 assuming the line to be a plane mirror.
- 29) Find the sum of n-terms of sequence $8 + 88 + 888 + \cdots$.

OR

If p^{th} , q^{th} and r^{th} term of a GP are a, b and c respectively. Prove that

$$a^{q-r} * b^{r-p} * c^{p-q} = 1.$$

30) If A and B are 2 events, such that P(A) = 0.54, P(B) = 0.69 and $P(A \cap B) =$

- 0.35 . Find
- a) $P(A \cup B)$ b) $P(B \cap A')$ c) $P(A' \cap B')$

Section – D (5 marks)

31) Solve the following system of inequality graphically

$$3x + 2y \le 150,$$
$$x + 4y \le 80,$$
$$x \le 15,$$
$$x \ge 0; y \ge 0.$$

32) If 4-digit numbers greater than 5000 are randomly formed from the digits 0, 1,

3, 5 and 7. What is the probability of forming a number divisible by 5 when,

Page 4 of 6

- a) The digits are repeated.
- b) The repetition of digit is not allowed.
- 33) If a function $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = \begin{cases} 2x; x > 3 \\ x^2; 3 \ge x > 1 \\ 3x; x \le 1 \end{cases}$. Calculate

$$f(-1) + f(2) + f(4)$$

- 34) The mean and standard deviation of 20 observations are found to be 10 & 2. On rechecking, it was found that observation 8 was incorrect. Calculate the correct mean and standard deviation in each of the following cases:
 - a) If wrong item is omitted. b) If it is replaced by 12.
- 35) If 'p' be the length of perpendicular from origin to the line whose intercepts on axes are a and b then show that: $\frac{1}{p^2} = \frac{1}{a^2} + \frac{1}{b^2}$.

OR

In $\triangle ABC$ with vertices A(2, 3), B(4, -1), C(1, 2). Find the equation and the length of altitude from A to BC.

Section-E (4 marks)

CASE STUDY:

- 36) A person has 2 parents, 4 grandparents, 8 great grand parents. Find: (2+2)
 - a) Number of his ancestors during the 10 generations preceding his own.
 - b) What will be the number of ancestor in 6th generation.
- 37) Ram is standing on the boundary of a circular park whose equation is

 $(x-3)^2 + (y-5)^2 = 49$. He wants to make another circular park whose area

is double the area of this circular path. Find: (1+1+2)

- a) Radius of circular park.
- b) Circumference of park.
- c) Equation of park.

38) Aman, standing in a park which is triangular whose vertices are A(3,-5,7) and

B(3,-5,7) asked his friend to stand at a point whose coordinates are (1,1,1) in

such a way that it always divides medians in the ratio 2:1 from vertex to base.

Calculate:

(1+2+1)

- a) The coordinate of third vertex.
- b) Length of median.
- c) Name the point whose coordinates are (1,1,1).